Effects of Enzymatic Cottonseed Protein Concentrate as a Feed Protein Source on the Growth, Plasma Parameters, Liver Antioxidant Capacity and Immune Status of Largemouth Bass (Micropterus salmoides)

Author:

Zhang Qile,Liang HualiangORCID,Xu Pao,Xu Gangchun,Zhang Lu,Wang Yongli,Ren Mingchun,Chen Xiaoru

Abstract

This study appraised the impact of enzymatic cottonseed protein concentrate (ECP) as a fish meal (FM) substitute on the growth and health of largemouth bass (Micropterus salmoides) (initial weight 14.99 ± 0.03 g). Five diets with equal nitrogen, fat, and energy were designed to replace 0%, 7.78%, 15.56%, 23.33%, and 31.11% FM by adding 0%, 3.6%, 7.2%, 10.8%, and 14.4% ECP, named ECP0, ECP3.6, ECP7.2, ECP10.8, and ECP14.4, respectively. We fed 300 fish with five experimental diets for 60 days. The results revealed that weight gain rate (WGR) and specific growth rate (SGR) did not notably reduce until the addition of ECP exceeded 7.2%. The proximate composition of fish was not affected by the amount of ECP added in diets. Plasma total protein (TP), albumin (ALB), and high-density lipoprotein (HDL) concentrations increased with the increase of ECP dosage, while the triglyceride (TG) and low-density lipoprotein (LDL) concentrations and alkaline phosphatase (ALP) activity showed an opposite trend. For hepatic antioxidant capacity, the hepatic total superoxide dismutase (T-SOD) and catalase (CAT) activities, glutathione (GSH) content, and the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase (SOD), and CAT were increased by ECP, while the hepatic malondialdehyde (MDA) content and the expression of kelch-like-ECH-associated protein 1 (Keap1) were decreased. With regard to inflammation, the expression of nuclear factor-kappa B (NF-κB), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) were inhibited by ECP. In summary, the amount of ECP added to diet can reach 7.2% to replace 15.56% FM without hampering the growth of largemouth bass, and ECP can improve the antioxidant and immune capacity.

Funder

National Key Research and Development Program of China

earmarked fund for CARS

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3