Hybridizing Fuzzy String Matching and Machine Learning for Improved Ontology Alignment

Author:

Rudwan Mohammed Suleiman Mohammed1ORCID,Fonou-Dombeu Jean Vincent1

Affiliation:

1. School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa

Abstract

Ontology alignment has become an important process for identifying similarities and differences between ontologies, to facilitate their integration and reuse. To this end, fuzzy string-matching algorithms have been developed for strings similarity detection and have been used in ontology alignment. However, a significant limitation of existing fuzzy string-matching algorithms is their reliance on lexical/syntactic contents of ontology only, which do not capture semantic features of ontologies. To address this limitation, this paper proposed a novel method that hybridizes fuzzy string-matching algorithms and the Deep Bidirectional Transformer (BERT) deep learning model with three machine learning regression classifiers, namely, K-Nearest Neighbor Regression (kNN), Decision Tree Regression (DTR), and Support Vector Regression (SVR), to perform the alignment of ontologies. The use of the kNN, SVR, and DTR classifiers in the proposed method resulted in the building of three similarity models (SM), encoded SM-kNN, SM-SVR, and SM-DTR, respectively. The experiments were conducted on a dataset obtained from the anatomy track in the Ontology Alignment and Evaluation Initiative 2022 (OAEI 2022). The performances of the SM-kNN, SM-SVR, and SM-DTR models were evaluated using various metrics including precision, recall, F1-score, and accuracy at thresholds 0.70, 0.80, and 0.90, as well as error rates and running times. The experimental results revealed that the SM-SVR model achieved the best recall of 1.0, while the SM-DTR model exhibited the best precision, accuracy, and F1-score of 0.98, 0.97, and 0.98, respectively. Furthermore, the results showed that the SM-kNN, SM-SVR, and SM-DTR models outperformed state-of-the-art alignment systems that participated in the OAEI 2022 challenge, indicating the superior capability of the proposed method.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3