Network Pharmacology Analysis, Molecular Docking Integrated Experimental Verification Reveal the Mechanism of Gynostemma pentaphyllum in the Treatment of Type II Diabetes by Regulating the IRS1/PI3K/Akt Signaling Pathway

Author:

Yang Songqin1,Zhao Mao1,Lu Mingxing1,Feng Yuhan1,Zhang Xia1,Wang Daoping2,Jiang Wenwen1

Affiliation:

1. School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China

2. Key Laboratory of Natural Products Chemistry, Guizhou Academy of Sciences, Guiyang 550014, China

Abstract

Gynostemma pentaphyllum (Thunb.) Makino (GP), a plant with homology of medicine and food, as a traditional Chinese medicine, possesses promising biological activities in the prevention and treatment of type 2 diabetes mellitus (T2DM). However, the material basis and the mechanism of action of GP in the treatment of T2DM have not been fully elucidated. This study aimed to clarify the active components, potential targets and signaling pathways of GP in treating T2DM. The chemical ingredients of GP were collected by combining UPLC-HRMS analysis and literature research. Network pharmacology revealed that GP had 32 components and 326 potential targets in treating T2DM. The results showed that GP affected T2DM by mediating the insulin resistance signaling pathway, PI3K/Akt signaling pathway and FoxO1 signaling pathway, which had a close relationship with T2DM. Molecular docking results showed that STAT3, PIK3CA, AKT1, EGFR, VEGFA and INSR had high affinity with the active compounds of GP. In vitro, GP extracts obviously increased the glucose uptake and glucose consumption in IR-HepG2 cells. GP extracts increased the levels of PI3K, p-AKT, p-GSK3β and p-FoxO1 and decreased the expression of p-IRS1, p-GS, PEPCK and G6Pase, which indicated that GP could promote glycogen synthesis and inhibit gluconeogenesis by regulating the IRS1/PI3K/Akt signaling pathway. The results demonstrated that GP could improve insulin resistance by promoting glucose uptake and glycogen synthesis and inhibiting gluconeogenesis through regulating the IRS1/PI3K/Akt signaling pathway, which might be a potential alternative therapy for T2DM.

Funder

Guizhou Provincial Science and Technology Plan Project

Science and Technology Project of Guizhou Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3