Inventory Tracking for Unstructured Environments via Probabilistic Reasoning

Author:

Rajaraman MabaranORCID,Bannerman Kyle,Shimada Kenji

Abstract

Workpiece location is critical to efficiently plan actions downstream in manufacturing processes. In labor-intensive heavy industries, like construction and shipbuilding, multiple stakeholders interact, stack and move workpieces in the absence of any system to log such actions. While track-by-detection approaches rely on sensing technologies such as Radio Frequency Identification (RFID) and Global Positioning System (GPS), cluttered environments and stacks of workpieces pose several limitations to their adaptation. These challenges limit the usage of such technology to presenting the last known position of a workpiece with no further guidance on a search strategy. In this work we show that a multi-hypothesis tracking approach that models human reasoning can provide a search strategy based on available observations of a workpiece. We show that inventory tracking problems under uncertainty can be approached like probabilistic inference approaches in localization to detect, estimate and update the belief of the workpiece locations. We present a practical Internet-of-Things (IoT) framework for information collection over which we build our reasoning. We also present the ability of our system to accommodate additional constraints to prune search locations. Finally, in our experiments we show that our approach can provide a significant reduction against the conventional search for missing workpieces, of up to 80% in workpieces to visit and 60% in distance traveled. In our experiments we highlight the critical nature of identifying stacking events and inferring locations using reasoning to aid searches even when direct observation of a workpiece is not available.

Publisher

MDPI AG

Subject

General Engineering

Reference44 articles.

1. Intelligent Manufacturing in the Context of Industry 4.0: A Review

2. Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination

3. Conceptual framework for Industry 4.0;Salkin,2018

4. Assessing the impact of materials tracking technologies on construction craft productivity

5. How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 Perspective;Brettel;Int. J. Mech. Ind. Sci. Eng.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3