First Experience with Zhuhai-1 Hyperspectral Data for Urban Dominant Tree Species Classification in Shenzhen, China

Author:

Qin Haiming1ORCID,Wang Weimin234,Yao Yang1,Qian Yuguo1,Xiong Xiangyun234,Zhou Weiqi156ORCID

Affiliation:

1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

2. Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China

3. Guangdong Greater Bay Area, Change and Comprehensive Treatment of Regional Ecology and Environment, National Observation and Research Station, Shenzhen 518049, China

4. State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Rapid Urbanization Region, Shenzhen 518049, China

5. University of Chinese Academy of Sciences, Beijing 100049, China

6. Beijing-Tianjin-Hebei Urban Megaregion National Observation and Research Station for Eco-Environmental Change, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Abstract

An accurate spatial distribution map of the urban dominant tree species is crucial for evaluating the ecosystem service value of urban forests and formulating urban sustainable development strategies. Spaceborne hyperspectral remote sensing has been utilized to distinguish tree species, but these hyperspectral data have a low spatial resolution (pixel size ≥ 30 m), which limits their ability to differentiate tree species in urban areas characterized by fragmented patches and robust spatial heterogeneity. Zhuhai-1 is a new hyperspectral satellite sensor with a higher spatial resolution of 10 m. This study aimed to evaluate the potential of Zhuhai-1 hyperspectral imagery for classifying the urban dominant tree species. We first extracted 32 reflectance bands and 18 vegetation indices from Zhuhai-1 hyperspectral data. We then used the random forest classifier to differentiate 28 dominant tree species in Shenzhen based on these hyperspectral features. Finally, we analyzed the effects of the classification paradigm, classifier, and species number on the classification accuracy. We found that combining the hyperspectral reflectance bands and vegetation indices could effectively distinguish the 28 dominant tree species in Shenzhen, obtaining an overall accuracy of 76.8%. Sensitivity analysis results indicated that the pixel-based classification paradigm was slightly superior to the object-based paradigm. The random forest classifier proved to be the optimal classifier for distinguishing tree species using Zhuhai-1 hyperspectral imagery. Moreover, reducing the species number could slowly improve the classification accuracy. These findings suggest that Zhuhai-1 hyperspectral data can identify the urban dominant tree species with accuracy and holds potential for application in other cities.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences

Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3