Evaluating the Performance of PRISMA Shortwave Infrared Imaging Sensor for Mapping Hydrothermally Altered and Weathered Minerals Using the Machine Learning Paradigm

Author:

Agrawal Neelam1,Govil Himanshu2,Mishra Gaurav2,Gupta Manika3,Srivastava Prashant K.4ORCID

Affiliation:

1. Department of Computer Applications, National Institute of Technology Raipur, Raipur 492010, India

2. Department of Applied Geology, National Institute of Technology Raipur, Raipur 492010, India

3. Department of Geology, University of Delhi, New Delhi 110007, India

4. Remote Sensing Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India

Abstract

Satellite images provide consistent and frequent information that can be used to estimate mineral resources over a large spatial extent. Advances in spaceborne hyperspectral remote sensing (HRS) and machine learning can help to support various remote-sensing-based applications, including mineral exploration. Leveraging these advances, the present study evaluates recently launched PRISMA spaceborne satellite images to map hydrothermally altered and weathered minerals using various machine-learning-based classification algorithms. The study was performed for the town of Jahazpur in Rajasthan, India (75°06′23.17″E, 25°25′23.37″N). The distribution map for minerals such as kaolinite, talc, and montmorillonite was generated using the spectral angle mapper technique. The resultant mineral distribution map was verified through an intensive field validation survey on surface exposures of the minerals. Furthermore, the obtained pixels of the end-members were used to develop the machine-learning-based classification models. Measures such as accuracy, kappa coefficient, F1 score, precision, recall, and ROC curve were employed to evaluate the performance of developed models. The results show that the stochastic gradient descent and artificial-neural-network-based multilayer perceptron classifiers were more accurate than other algorithms. Results confirm that the PRISMA dataset has enormous potential for mineral mapping in mountainous regions utilizing a machine-learning-based classification framework.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3