Hydrodynamic Analysis of a Multibody Wave Energy Converter in Regular Waves

Author:

Poguluri Sunny KumarORCID,Kim Dongeun,Bae Yoon HyeokORCID

Abstract

A performance assessment of wave power absorption characteristics of isolated and multiple wave energy converter (WEC) rotors was presented in this study for various wave-heading angles and wave frequencies. Numerical hydrodynamic analysis of the WEC was carried out using the three-dimensional linear boundary element method (BEM) and nonlinear computational fluid dynamics (CFD). Experimental results were used to validate the adopted numerical models. Influence with and without power take-off (PTO) was estimated on both isolated and multiple WEC rotors. Furthermore, to investigate the interaction effect among WECs, a q-factor was used. Incorporation of viscous and PTO damping into the linear BEM solution shows the maximum reduction focused around peak frequency but demonstrated an insignificant effect elsewhere. The q-factor showed both constructive and destructive interactions with the increase of the wave-heading angle and wave frequencies. Further investigation based on the prototype WEC rotor was carried, and calculated results of the linear BEM and the nonlinear CFD were compared. The pitch response and q-factor of the chosen wave frequencies demonstrated satisfactory consistency between the linear BEM and nonlinear CFD results, except for some wave frequencies. Estimated optimal time-averaged power using linear BEM show that the maximum extracted power close to the zero wave-heading angle around the resonance frequency decreases as the wave-heading angle increases. Overall, the linear BEM on the extracted power is overestimated compared with the nonlinear CFD results.

Funder

Korea Institute of Energy Technology Evaluation and Planning

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3