Activation of Kinin B1R Upregulates ADAM17 and Results in ACE2 Shedding in Neurons

Author:

Parekh Rohan UmeshORCID,Sriramula SrinivasORCID

Abstract

Angiotensin converting enzyme 2 (ACE2) is a critical component of the compensatory axis of the renin angiotensin system. Alterations in ACE2 gene and protein expression, and activity mediated by A Disintegrin And Metalloprotease 17 (ADAM17), a member of the “A Disintegrin And Metalloprotease” (ADAM) family are implicated in several cardiovascular and neurodegenerative diseases. We previously reported that activation of kinin B1 receptor (B1R) in the brain increases neuroinflammation, oxidative stress and sympathoexcitation, leading to the development of neurogenic hypertension. We also showed evidence for ADAM17-mediated ACE2 shedding in neurons. However, whether kinin B1 receptor (B1R) activation has any role in altering ADAM17 activity and its effect on ACE2 shedding in neurons is not known. In this study, we tested the hypothesis that activation of B1R upregulates ADAM17 and results in ACE2 shedding in neurons. To test this hypothesis, we stimulated wild-type and B1R gene-deleted mouse neonatal primary hypothalamic neuronal cultures with a B1R-specific agonist and measured the activities of ADAM17 and ACE2 in neurons. B1R stimulation significantly increased ADAM17 activity and decreased ACE2 activity in wild-type neurons, while pretreatment with a B1R-specific antagonist, R715, reversed these changes. Stimulation with specific B1R agonist Lys-Des-Arg9-Bradykinin (LDABK) did not show any effect on ADAM17 or ACE2 activities in neurons with B1R gene deletion. These data suggest that B1R activation results in ADAM17-mediated ACE2 shedding in primary hypothalamic neurons. In addition, stimulation with high concentration of glutamate significantly increased B1R gene and protein expression, along with increased ADAM17 and decreased ACE2 activities in wild-type neurons. Pretreatment with B1R-specific antagonist R715 reversed these glutamate-induced effects suggesting that indeed B1R is involved in glutamate-mediated upregulation of ADAM17 activity and ACE2 shedding.

Funder

National Institutes of Health

American Heart Association

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3