Abstract
Red blood cells (RBCs) release extracellular vesicles (EVs) including both endosome-derived exosomes and plasma-membrane-derived microvesicles (MVs). RBC-derived EVs (RBCEVs) are secreted during erythropoiesis, physiological cellular aging, disease conditions, and in response to environmental stressors. RBCEVs are enriched in various bioactive molecules that facilitate cell to cell communication and can act as markers of disease. RBCEVs contribute towards physiological adaptive responses to hypoxia as well as pathophysiological progression of diabetes and genetic non-malignant hematologic disease. Moreover, a considerable number of studies focus on the role of EVs from stored RBCs and have evaluated post transfusion consequences associated with their exposure. Interestingly, RBCEVs are important contributors toward coagulopathy in hematological disorders, thus representing a unique evolving area of study that can provide insights into molecular mechanisms that contribute toward dysregulated hemostasis associated with several disease conditions. Relevant work to this point provides a foundation on which to build further studies focused on unraveling the potential roles of RBCEVs in health and disease. In this review, we provide an analysis and summary of RBCEVs biogenesis, composition, and their biological function with a special emphasis on RBCEV pathophysiological contribution to coagulopathy. Further, we consider potential therapeutic applications of RBCEVs.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献