Abstract
The accurate numerical prediction of welding deformation is important to improve the structural safety of ships and offshore structures in heavy industries. The precise reflection of the real working condition in the numerical prediction is an essential factor to improve its result. In the present study, the effect of the gravity force on numerical prediction of the optimal welding sequence of a general ship grillage structure was validated with the introduction of a new boundary condition in which the structure is placed over rails. Additionally, the direction of the gravity force of welded structures could be changed at the final assembly process according to the production plan. The effect of the gravitational orientation on the final welding displacements was also investigated herein. The elastic finite element method using the inherent strain, interface element, and multipoint constraint function was introduced to analyze the welding deformation. This study validated the influence of the gravity force on the numerical prediction of welding displacements in a general ship grillage structure.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献