Affiliation:
1. Department of Electrical Engineering, Shaqra University, Riyadh 11911, Saudi Arabia
Abstract
In this paper, narrow-bandgap polymer acceptors combining a benzotriazole (BTz)-core fused-ring segment, named the PZT series, were used with a high-absorption-efficiency polymer (PBDB) compound with branched 2-butyl octyl, linear n-octyl, and methyl to be utilized as a graded-index (GI) active layer of the polymer solar cells (PSCs) to increase the photocurrent and enhance solar efficiency compared to the existing PBDB-T:PZT and PBDB-T:PZT-γ. In addition, a two-dimensional photonic crystal (2D-PhC) structure was utilized as a light-trapping anti-reflection coating (ARC) thin film based on indium tin oxide (ITO) to reduce incident light reflection and enhance its absorption. The dimensions of the cell layers were optimized to achieve the maximum power-conversion efficiency (PCE). Furthermore, the design and simulations were conducted from a 300 nm to 1200 nm wavelength range using a finite difference time-domain (FDTD) analysis. One of the most important results expected from the study was the design of a nano solar cell at (64 µm)2 with a PCE of 25.1%, a short-circuit current density (JSC) of 27.74 mA/cm2, and an open-circuit voltage (VOC) of 0.986 V.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献