Evaluation of Spatiotemporal Patterns and Water Quality Conditions Using Multivariate Statistical Analysis in the Yangtze River, China

Author:

Lu Jing1,Gu Jiarong1,Han Jinyang2ORCID,Xu Jun1,Liu Yi1,Jiang Gengmin1,Zhang Yifeng3ORCID

Affiliation:

1. College of Civil Engineering and Architecture, Nanyang Normal University, Nanyang 473061, China

2. School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT95AG, UK

3. Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract

As a crucial surface water resource, the Yangtze River has raised concerns about its water quality due to its importance in economic and social development, environmental conservation, and agricultural development. The principal component analysis (PCA), hierarchical clustering analysis (HCA), and the water quality index (WQI) were utilized to assess the overall condition and detect spatiotemporal patterns and the key parameters of water quality in the Yangtze River. All usage data were determined monthly from samples taken in 2021 at the 33 Yangtze River water quality monitoring stations. The results demonstrated that 85% of the monitoring stations in the whole Yangtze River were maintained at a “good” condition, with average WQI values ranging from 71.16 to 81.25. The water quality was slightly poorer in the summer, with 56.6% of monitoring stations being in “medium” condition. Spatially, there was a downward trend in the water quality from upstream to downstream. Two significant principal component scores (PCs) were produced as a result of PCA and HCA, explaining 60.3% of the total variance in the upstream, 67.4% in the transition zone, and 50.4% in the downstream, respectively. In addition, the middle–upper reaches of water quality were found to correlated with CODMn, whereas the water quality in the downstream were mainly influenced by TUR, TP, T, and DO. The results primarily motivated our understanding of the Yangtze River’s water quality status and suggested the main targets for water quality improvement in different monitoring areas.

Funder

Ministry of Education’s “Chunhui Program” Collaborative Research Project of China

Key Technology R&D Program of Henan Province of China

Scientific Development Program of Nanyang of China

Scientific Research Program of Nanyang Normal University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3