Using Worker Position Data for Human-Driven Decision Support in Labour-Intensive Manufacturing

Author:

Aslan Ayse1ORCID,El-Raoui Hanane2ORCID,Hanson Jack3ORCID,Vasantha Gokula1ORCID,Quigley John2ORCID,Corney Jonathan3ORCID,Sherlock Andrew4

Affiliation:

1. The School of Computing, Engineering and The Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK

2. Strathclyde Business School, University of Strathclyde, Glasgow G1 1XQ, UK

3. School of Engineering, The University of Edinburgh, Edinburgh, EH8 9YL, UK

4. National Manufacturing Institute Scotland, Glasgow PA3 2EF, UK

Abstract

This paper provides a novel methodology for human-driven decision support for capacity allocation in labour-intensive manufacturing systems. In such systems (where output depends solely on human labour) it is essential that any changes aimed at improving productivity are informed by the workers’ actual working practices, rather than attempting to implement strategies based on an idealised representation of a theoretical production process. This paper reports how worker position data (obtained by localisation sensors) can be used as input to process mining algorithms to generate a data-driven process model to understand how manufacturing tasks are actually performed and how this model can then be used to build a discrete event simulation to investigate the performance of capacity allocation adjustments made to the original working practice observed in the data. The proposed methodology is demonstrated using a real-world dataset generated by a manual assembly line involving six workers performing six manufacturing tasks. It is found that, with small capacity adjustments, one can reduce the completion time by 7% (i.e., without requiring any additional workers), and with an additional worker a 16% reduction in completion time can be achieved by increasing the capacity of the bottleneck tasks which take relatively longer time than others.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3