Headspace Solid-Phase Microextraction: A Useful and Quick Tool for the Traceability and Quality Assessment of Wine Cork Stoppers

Author:

Díaz-Maroto M. Consuelo1ORCID,Alarcón Marina1,Loarce Lucía1,Díaz-Maroto Ignacio J.2ORCID,Pérez-Coello M. Soledad1ORCID

Affiliation:

1. Area of Food Technology, Regional Institute for Applied Scientific Research (IRICA), Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda, Camilo José Cela 10, 13071 Ciudad Real, Spain

2. Department of Agroforestry Engineering, Higher Polytechnic Engineering School, University of Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain

Abstract

Natural cork remains a favored option for sealing high-quality wine bottles, despite its high cost for wineries. The cork industry faces the challenge of certifying the quality and traceability of these corks, with physical–chemical characterization being a valuable tool in establishing these parameters. While cork taint compounds must be absent or in low concentrations, the volatile fraction of cork contains numerous compounds that, even in small amounts, can impact the wine’s final aroma. Moreover, these volatile compounds are indicative of the geographical origin of the cork planks used to make the stoppers. In this work, a total of 68 volatile compounds (alkanes, terpenes, benzenic compounds, aldehydes, ketones, acids, esters, alcohols and furanic and pyranic compounds) from natural corks of different qualities and origins were identified, using a fast and sensitive technique: headspace solid-phase microextraction coupled to gas chromatography–mass spectrometry (HS-SPME-GC-MS). Based on these volatile compounds, it was possible to establish differences between corks of different origins, although no discernible differences were detected in the samples of differing visual qualities, as this is a subjective parameter largely dependent on the cork’s external appearance. These findings show that the analysis of the volatile composition of corks via HS-SPME-GC-MS can be used as a quick tool for tracking their traceability and selecting the most appropriate parameters at each stage of processing to minimize the increase in unwanted compounds.

Funder

Junta de Comunidades de Castilla-La Mancha

University of Castilla-La Mancha

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3