Research on an Improved Method for Galloping Stability Analysis Considering Large Angles of Attack

Author:

Ma Zhenxing12ORCID,Li Jiawu12,Liu Shuangrui12,Li Han123,Wang Feng12ORCID

Affiliation:

1. School of Highway, Chang’an University, Xi’an 710064, China

2. Wind Tunnel Laboratory, Chang’an University, Xi’an 710064, China

3. CCCC First Highway Consultants Co., Ltd., Shanghai 200030, China

Abstract

In view of the deficiency of the quasi-steady galloping critical wind speed calculation method based on the classical Den Hartog criterion, this paper proposes a quasi-steady galloping stability analysis method that considers the wind attack angle criterion (dCV/dα) through theoretical analysis. Firstly, the tri-component force coefficients of a square-section model were measured through wind tunnel tests, and the galloping force coefficients calculated with three different galloping criteria (the dCV/dα criterion, Den Hartog criterion, and Xie criterion) were compared and analyzed. Secondly, to further verify the reliability and applicability of the criteria proposed in this study, wind tunnel tests and numerical simulations were conducted on an H-shaped section. The verification results of the H-shaped section showed that under the action of the incoming flow at a large angle of attack of 70°, the maximum error of the classic Den Hartog criterion could reach about 44%. This study used the dCV/dα criterion while considering the large angle of attack of the incoming flow, and its calculation error could be controlled within 10%. At the same time, the numerical simulation showed that there was serious aerodynamic instability in this section under the critical wind speed. A pair of periodic vortex structures were formed in the wake region of the H-shaped section, resulting in constant generation and separation phenomena, which induced structural instability.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3