Thermodynamic Modeling of a Solar-Driven Organic Rankine Cycle-Absorption Cooling System for Simultaneous Power and Cooling Production

Author:

Jiménez-García José C.1ORCID,Moreno-Cruz Isaías2ORCID,Rivera Wilfrido1ORCID

Affiliation:

1. Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco 62580, Mexico

2. Laboratorio de Energía Solar Térmica, Centro de Investigaciones en Óptica AC, Aguascalientes 20200, Mexico

Abstract

Humanity is facing the challenge of reducing its environmental impact. For this reason, many specialists worldwide have been studying the processes of production and efficient use of energy. In this way, developing cleaner and more efficient energy systems is fundamental for sustainable development. The present work analyzed the technical feasibility of a solar-driven power-cooling system operating in a particular location in Mexico. The theoretical system integrates organic Rankine and single-stage absorption cooling cycles. A parabolic trough collector and a storage system integrated the solar system. Its performance was modeled for a typical meteorological year using the SAM software by NREL. The analyzed working fluids for the organic cycle include benzene, cyclohexane, toluene, and R123, while the working fluid of the absorption system is the ammonia-water mixture. The cycle’s first and second-law performances are determined in a wide range of operating conditions. Parameters such as the energy utilization factor, turbine power, COP, and exergy efficiency are reported for diverse operating conditions. It was found that the highest energy utilization factor was 0.68 when the ORC utilized benzene as working fluid at ORC and ACS condensing temperatures of 80 °C and 20 °C, respectively, and at a cooling temperature of 0 °C. The best exergy efficiency was 0.524 at the same operating conditions but at a cooling temperature of −10 °C.

Funder

PAPIIT-DGAPA

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3