Microbial Electrolysis Cells for Decentralised Wastewater Treatment: The Next Steps

Author:

Fudge Thomas,Bulmer Isabella,Bowman KyleORCID,Pathmakanthan Shangami,Gambier WilliamORCID,Dehouche Zahir,Al-Salem Sultan MajedORCID,Constantinou AchilleasORCID

Abstract

Traditional wastewater treatment methods have become aged and inefficient, meaning alternative methods are essential to protect the environment and ensure water and energy security worldwide. The use of microbial electrolysis cells (MEC) for wastewater treatment provides an innovative alternative, working towards circular wastewater treatment for energy production. This study evaluates the factors hindering industrial adoption of this technology and proposes the next steps for further research and development. Existing pilot-scale investigations are studied to critically assess the main limitations, focusing on the electrode material, feedstock, system design and inoculation and what steps need to be taken for industrial adoption of the technology. It was found that high strength influents lead to an increase in energy production, improving economic viability; however, large variations in waste streams indicated that a homogenous solution to wastewater treatment is unlikely with changes to the MEC system specific to different waste streams. The current capital cost of implementing MECs is high and reducing the cost of the electrodes should be a priority. Previous pilot-scale studies have predominantly used carbon-based materials. Significant reductions in relative performance are observed when electrodes increase in size. Inoculation time was found to be a significant barrier to quick operational performance. Economic analysis of the technology indicated that MECs offer an attractive option for wastewater treatment, namely greater energy production and improved treatment efficiency. However, a significant reduction in capital cost is necessary to make this economically viable. MEC based systems should offer improvements in system reliability, reduced downtime, improved treatment rates and improved energy return. Discussion of the merits of H2 or CH4 production indicates that an initial focus on methane production could provide a stepping-stone in the adoption of this technology while the hydrogen market matures.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3