Combined Retrievals of Turbidity from Sentinel-2A/B and Landsat-8/9 in the Taihu Lake through Machine Learning

Author:

Yang Zhe12,Gong Cailan1ORCID,Lu Zhihua3,Wu Enuo4,Huai Hongyan4,Hu Yong1,Li Lan1,Dong Lei12

Affiliation:

1. Key Laboratory of Infrared System Detection and Imaging Technologies, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Shanghai Academy of Environmental Sciences, Shanghai 200233, China

4. Shanghai Environment Monitoring Center, Shanghai 200235, China

Abstract

Lakes play a crucial role in the earth’s ecosystems and human activities. While turbidity is not a direct biochemical indicator of lake water quality, it is relatively easy to measure and indicates trophic status and lake health. Although ocean color satellites have been widely used to monitor water color parameters, their coarse spatial resolution makes it hard to capture the fine spatial variability of turbidity in lakes. The combination of Sentinel-2 and Landsat provides an opportunity to monitor lake turbidity with high spatial and temporal resolution. This study aims to generate consistent turbidity products in Taihu Lake from 2018 to 2022 using the Multispectral Instrument (MSI) on board Sentinel-2A/B and the Operational Land Imager (OLI) on board Landsat-8/9. We first tested the performance of three atmospheric correction methods to retrieve consistent reflectance from MSI and OLI images. We found that the Rayleigh correction and a subtraction of the SWIR band from Rayleigh-corrected reflectance can generate the most consistent reflectance (the coefficient of determination (R2) > 0.84, the mean absolution percentage error (MAPE) < 7%, the median error (ME) < 0.0035, and slope > 0.92). Machine learning models outperformed an existing semi-analytical retrieval algorithm in retrieving turbidity (MSI: R2 = 0.92, MAPE = 18.78%, and OLI: R2 = 0.93, MAPE = 16.20%). The consistency of turbidity from the same-day MSI and OLI images was also satisfactory (N = 3110 and MAPE = 26.48%). The distribution of turbidity exhibited obvious spatial and seasonal variability in Taihu Lake from 2018 to 2022. The results show the potential of MSI and OLI when combined to monitor inland lake water quality.

Funder

Shanghai 2021 “Science and Technology Innovation Action Plan” Social Development Science and Technology Research Project

Jiangsu Provincial Water Conservancy Science and Technology Project

Science and Technology Project of Shanghai Municipal Water Bureau

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3