Light Absorption by Optically Active Components in the Arctic Region (August 2020) and the Possibility of Application to Satellite Products for Water Quality Assessment

Author:

Efimova Tatiana1ORCID,Churilova Tatiana1ORCID,Skorokhod Elena1ORCID,Suslin Vyacheslav2ORCID,Buchelnikov Anatoly S.13ORCID,Glukhovets Dmitry45ORCID,Khrapko Aleksandr4,Moiseeva Natalia1

Affiliation:

1. A. O. Kovalevsky Institute of Biology of the Southern Seas (IBSS), Russian Academy of Sciences, 299011 Sevastopol, Russia

2. Marine Hydrophysical Institute Russian Academy of Sciences, 299011 Sevastopol, Russia

3. Laboratory of Molecular and Cellular Biophysics, Sevastopol State University, 299053 Sevastopol, Russia

4. Shirshov Institute of Oceanology, Russian Academy of Sciences, 117997 Moscow, Russia

5. Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia

Abstract

In August 2020, during the 80th cruise of the R/V “Akademik Mstislav Keldysh”, the chlorophyll a concentration (Chl-a) and spectral coefficients of light absorption by phytoplankton pigments, non-algal particles (NAP) and colored dissolved organic matter (CDOM) were measured in the Norwegian Sea, the Barents Sea and the adjacent area of the Arctic Ocean. It was shown that the spatial distribution of the three light-absorbing components in the explored Arctic region was non-homogenous. It was revealed that CDOM contributed largely to the total non-water light absorption (atot(λ) = aph(λ) + aNAP(λ) + aCDOM(λ)) in the blue spectral range in the Arctic Ocean and the Barents Sea. The fraction of NAP in the total non-water absorption was low (less than 20%). The depth of the euphotic zone depended on atot(λ) in the surface water layer, which was described by a power equation. The Arctic Ocean, the Norwegian Sea and the Barents Sea did not differ in the Chl-a-specific light absorption coefficients of phytoplankton. In the blue maximum of phytoplankton absorption spectra, Chl-a-specific light absorption coefficients of phytoplankton in the upper mixed layer (UML) were higher than those below the UML. Relationships between phytoplankton absorption coefficients and Chl-a were derived by least squares fitting to power functions for the whole visible domain with a 1 nm interval. The OCI, OC3 and GIOP algorithms were validated using a database of co-located results (day-to-day) of in situ measurements (n = 63) and the ocean color scanner data: the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra (EOS AM) and Aqua (EOS PM) satellites, the Visible and Infrared Imager/Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (S-NPP) and JPSS-1 satellites (also known as NOAA-20), and the Ocean and the Land Color Imager (OLCI) onboard the Sentinel-3A and Sentinel-3B satellites. The comparison showed that despite the technological progress in optical scanners and the algorithms refinement, the considered standard products (chlor_a, chl_ocx, aph_443, adg_443) carried little information about inherent optical properties in Arctic waters. Based on the statistic metrics (Bias, MdAD, MAE and RMSE), it was concluded that refinement of the algorithm for retrieval of water bio-optical properties based on remote sensing data was required for the Arctic region.

Funder

IBSS

Russian Science Foundation

state assignment of SIO RAS

Ministry of Education and Science of Russia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3