Machine Learning to Evaluate Impacts of Flood Protection in Bangladesh, 1983–2014

Author:

Manandhar AchutORCID,Fischer Alex,Bradley David J.,Salehin Mashfiqus,Islam M. Sirajul,Hope RobORCID,Clifton David A.

Abstract

Impacts of climate change adaptation strategies need to be evaluated using principled methods spanning sectors and longer time frames. We propose machine-learning approaches to study the long-term impacts of flood protection in Bangladesh. Available data include socio-economic survey and events data (death, migration, etc.) from 1983–2014. These multidecadal data, rare in their extent and quality, provide a basis for using machine-learning approaches even though the data were not collected or designed to assess the impact of the flood control investments. We test whether the embankment has affected the welfare of people over time, benefiting those living inside more than those living outside. Machine-learning approaches enable learning patterns in data to help discriminate between two groups: here households living inside vs. outside. They also help identify the most informative indicators of discrimination and provide robust metrics to evaluate the quality of the model. Overall, we find no significant difference between inside/outside populations based on welfare, migration, or mortality indicators. However, we note a significant difference in inward/outward movement with respect to the embankment. While certain data gaps and spatial heterogeneity in sampled populations suggest caution in any conclusive interpretation of the flood protection infrastructure, we do not see higher benefits accruing to those living with higher levels of protection. This has implications for Bangladesh’s planning for future and more extreme climate futures, including the national Delta Plan, and global investments in climate resilient infrastructure to create positive social impacts.

Funder

Department for International Development, UK Government

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3