Research on Flexible Job Shop Scheduling Problem with Handling and Setup Time Based on Improved Discrete Particle Swarm Algorithm

Author:

Kong Jili1,Wang Zhen1ORCID

Affiliation:

1. School of Modern Post, Beijing University of Posts and Telecommunications, Haidian District, Beijing 100876, China

Abstract

With the gradual emergence of customized manufacturing, intelligent manufacturing systems have experienced widespread adoption, leading to a surge in research interests in the associated problem of intelligent scheduling. In this paper, we study the flexible job shop scheduling problem (FJSP) with setup time, handling time, and processing time in a multi-equipment work center production environment oriented toward smart manufacturing and make-to-order requirements. A mathematical model with the optimization objectives of minimizing the maximum completion time, the total number of machine adjustments, the total number of workpieces handled and the total load of the machine is constructed, and an improved discrete particle swarm algorithm based on Pareto optimization and a nonlinear adaptive inertia weighting strategy is proposed to solve the model. By integrating the model characteristics and algorithm features, a hybrid initialization method is designed to generate a higher-quality initialized population. Next, three cross-variance operators are used to implement particle position updates to maintain information sharing among particles. Then, the performance effectiveness of this algorithm is verified by testing and analyzing 15 FJSP test instances. Finally, the feasibility and effectiveness of the designed algorithm for solving multi-objective FJSPs are verified by designing an FJSP test example that includes processing time, setup time and handling time.

Funder

Humanities and Social Science Youth foundation of the Ministry of Education of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3