Analysis and Correction of the Additive Phase Effect Generated by Power Change in a Mach–Zehnder Interferometer Integrated to an Optical Trap

Author:

Domínguez-Flores Azael D.1ORCID,Rayas Juan A.1ORCID,Martínez-García Amalia1ORCID,Cordero Raúl R.2ORCID

Affiliation:

1. Centro de Investigaciones en Óptica A.C., León, Guanajuato 37150, Mexico

2. Department of Physics, Faculty of Science, Universidad de Santiago de Chile, Santiago 9170022, Chile

Abstract

Immersion microscope objectives stand out for their large numerical aperture, which improves the optical resolution of imaging systems such as those used in microscopic interferometry. These objectives increase the gradient forces of a beam focused through them, forming an Optical Trap (OT). However, many studies on microscopic interferometry neglect the contributions of different optical materials in the system that are also exposed to laser radiation, perhaps simply assuming transparency. In this work, a Mach–Zehnder interferometer and an OT, which share several components (including the same oil immersion objective), were coupled. Here, the response of the interferometer to a progressive increase in the OT laser power, while the interferometer laser power remains constant, is reported. Changes in laser power affect the oil temperature, altering its refractive index and volume, which in turn causes a phase shifting on the transmitted wavefront. Optical phase analysis is applied in the three-dimensional measurement of the damage produced by the OT on a paint film. This study suggests that the refractive index variations in the immersion oil affect interferograms because they will then exhibit an additive phase term that must be considered in that final measurement. Additionally, the OT geometry changes with the power increase.

Funder

Consejo Nacional de Humanidades, Ciencias y Tecnologías

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3