Effects of Fuel Cell Size and Dynamic Limitations on the Durability and Efficiency of Fuel Cell Hybrid Electric Vehicles under Driving Conditions

Author:

Sun Wen1,Li Meijing2,Su Guoliang3,Li Guoxiang1,Cheng Hao4,Sun Ke1,Bai Shuzhan1

Affiliation:

1. School of Energy and Power Engineering, Shandong University, Jinan 250061, China

2. Automotive Research Institute, China National Heavy Duty Truck Group Co., Ltd., Jinan 250061, China

3. WeIchai Power Emission Solutions Technology Co., Ltd., Weifang 261061, China

4. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Abstract

In order to enhance the durability of fuel cell systems in fuel cell hybrid electric vehicles (FCHEVs), researchers have been dedicated to studying the degradation monitoring models of fuel cells under driving conditions. To predict the actual degradation factors and lifespan of fuel cell systems, a semi-empirical and semi-physical degradation model suitable for automotive was proposed and developed. This degradation model is based on reference degradation rates obtained from experiments under known conditions, which are then adjusted using coefficients based on the electrochemical model. By integrating the degradation model into the vehicle simulation model of FCHEVs, the impact of different fuel cell sizes and dynamic limitations on the efficiency and durability of FCHEVs was analyzed. The results indicate that increasing the fuel cell stack power improves durability while reducing hydrogen consumption, but this effect plateaus after a certain point. Increasing the dynamic limitations of the fuel cell leads to higher hydrogen consumption but also improves durability. When considering only the rated power of the fuel cell, a comparison between 160 kW and 100 kW resulted in a 6% reduction in hydrogen consumption and a 10% increase in durability. However, when considering dynamic limitation factors, comparing the maximum and minimum limitations of a 160 kW fuel cell, hydrogen consumption increased by 10%, while durability increased by 83%.

Funder

National Key R&D Program of China

Key Research and Development Program of Shandong Province

Asset & Laboratory Management Department of Shandong University, China

Undergraduate School of Shandong University, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3