Electrically Equivalent Head Tissue Materials for Electroencephalogram Study on Head Surrogates

Author:

Daru Richie Ranaisa1ORCID,Rabby Monjur Morshed12ORCID,Ko Tina1,Shinglot Yukti1,Raihan Rassel12ORCID,Adnan Ashfaq1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA

2. The University of Texas at Arlington Research Institute (UTARI), 7300 Jack Newell Blvd S, Fort Worth, TX 76118, USA

Abstract

With the recent advent of smart wearable sensors for monitoring brain activities in real-time, the scopes for using Electroencephalograms (EEGs) and Magnetoencephalography (MEG) in mobile and dynamic environments have become more relevant. However, their application in dynamic and open environments, typical of mobile wearable use, poses challenges. Presently, there is limited clinical data on using EEG/MEG as wearables. To advance these technologies at a time when large-scale clinical trials are not feasible, many researchers have turned to realistic phantom heads to further explore EEG and MEG capabilities. However, to achieve translational results, such phantom heads should have matching geometric features and electrical properties. Here, we have designed and fabricated multilayer chopped carbon fiber–PDMS reinforced composites to represent phantom head tissues. Two types of phantom layers are fabricated, namely seven-layer and four-layer systems with a goal to achieve matching electrical conductivities in each layer. Desired electrical conductivities are obtained by varying the weight fraction of the carbon fibers in PDMS. Then, the prototype system was calibrated and tested with a 32-electrode EEG cap. The test results demonstrated that the phantom effectively generates a variety of scalp potential patterns, achieved through a finite number of internal dipole generators within the phantom sample. This innovative design holds potential as a valuable test platform for assessing wearable EEG technology as well as developing an EEG analysis process.

Funder

Office of Naval Research

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3