Optimizing Nanofluid Hybrid Solar Collectors through Artificial Intelligence Models

Author:

Margoum Safae1,Hajji Bekkay1,Aneli Stefano2ORCID,Tina Giuseppe Marco2ORCID,Gagliano Antonio2

Affiliation:

1. Laboratory of Renewable Energy, Embedded System and Information Processing, National School of Applied Sciences, Mohammed First University, Oujda 60000, Morocco

2. Department of Electrical, Electronic and Computer Engineering, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy

Abstract

This study systematically explores and compares the performance of various artificial-intelligence (AI)-based models to predict the electrical and thermal efficiency of photovoltaic–thermal systems (PVTs) cooled by nanofluids. Employing extreme gradient boosting (XGB), extra tree regression (ETR), and k-nearest-neighbor (KNN) regression models, their accuracy is quantitatively evaluated, and their effectiveness measured. The results demonstrate that both XGB and ETR models consistently outperform KNN in accurately predicting both electrical and thermal efficiency. Specifically, the XGB model achieves remarkable correlation coefficient (R2) values of approximately 0.99999, signifying its superior predictive capabilities. Notably, the XGB model exhibits a slightly superior performance compared to ETR in estimating electrical efficiency. Furthermore, when predicting thermal efficiency, both XGB and ETR models demonstrate excellence, with the XGB model showing a slight edge based on R2 values. Validation against new data points reveals outstanding predictive performance, with the XGB model attaining R2 values of 0.99997 for electrical efficiency and 0.99995 for thermal efficiency. These quantitative findings underscore the accuracy and reliability of the XGB and ETR models in predicting the electrical and thermal efficiency of PVT systems when cooled by nanofluids. The study’s implications are significant for PVT system designers and industry professionals, as the incorporation of AI-based models offers improved accuracy, faster prediction times, and the ability to handle large datasets. The models presented in this study contribute to system optimization, performance evaluation, and decision-making in the field. Additionally, robust validation against new data enhances the credibility of these models, advancing the overall understanding and applicability of AI in PVT systems.

Publisher

MDPI AG

Reference56 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3