High-Accuracy Photovoltaic Power Prediction under Varying Meteorological Conditions: Enhanced and Improved Beluga Whale Optimization Extreme Learning Machine

Author:

Du Wei1,Peng Shi-Tao1,Wu Pei-Sen1,Tseng Ming-Lang2345ORCID

Affiliation:

1. Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Transport, Tianjin Research Institute for Water Transport Engineering, No. 2618 Xingang Erhao Road, Binhai New District, Tianjin 300456, China

2. Institute of Innovation and Circular Economy, Asia University, Taichung 413, Taiwan

3. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan

4. UKM Graduate School of Business, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

5. Department of Industrial Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

Abstract

Accurate photovoltaic (PV) power prediction plays a crucial role in promoting energy structure transformation and reducing greenhouse gas emissions. This study aims to improve the accuracy of PV power generation prediction. Extreme learning machine (ELM) was used as the core model, and enhanced and improved beluga whale optimization (EIBWO) was proposed to optimize the internal parameters of ELM, thereby improving its prediction accuracy for PV power generation. Firstly, this study introduced the chaotic mapping strategy, sine dynamic adaptive factor, and disturbance strategy to beluga whale optimization, and EIBWO was proposed with high convergence accuracy and strong optimization ability. It was verified through standard testing functions that EIBWO performed better than comparative algorithms. Secondly, EIBWO was used to optimize the internal parameters of ELM and establish a PV power prediction model based on enhanced and improved beluga whale optimization algorithm–optimization extreme learning machine (EIBWO-ELM). Finally, the measured data of the PV output were used for verification, and the results show that the PV power prediction results of EIBWO-ELM were more accurate regardless of whether it was cloudy or sunny. The R2 of EIBWO-ELM exceeded 0.99, highlighting its efficient ability to adapt to PV power generation. The prediction accuracy of EIBWO-ELM is better than that of comparative models. Compared with existing models, EIBWO-ELM significantly improves the predictive reliability and economic benefits of PV power generation. This study not only provides a technological foundation for the optimization of intelligent energy systems but also contributes to the sustainable development of clean energy.

Funder

China National Key R&D Program

Guangxi Science and Technology Major Program

Basic Research Fund of Central Public Interest Scientific Research Institutes in China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3