Overview of the Structural, Electronic and Optical Properties of the Cubic and Tetragonal Phases of PbTiO3 by Applying Hubbard Potential Correction

Author:

Derkaoui Issam1,Achehboune Mohamed2ORCID,Eglitis Roberts I.3ORCID,Popov Anatoli I.3ORCID,Rezzouk Abdellah1ORCID

Affiliation:

1. Laboratory of Solid State Physics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohammed Ben Abdellah, P.O. Box 1796, Fez 30000, Morocco

2. Laboratoire de Physique du Solide, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium

3. Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV1063 Riga, Latvia

Abstract

We have performed a systematic study resulting in detailed information on the structural, electronic and optical properties of the cubic (Pm3¯m) and tetragonal (P4mm) phases of PbTiO3 applying the GGA/PBE approximation with and without the Hubbard U potential correction. Through the variation in Hubbard potential values, we establish band gap predictions for the tetragonal phase of PbTiO3 that are in rather good agreement with experimental data. Furthermore, the bond lengths for both phases of PbTiO3 were assessed with experimental measurements, confirming the validity of our model, while chemical bond analysis highlights the covalent nature of the Ti–O and Pb–O bonds. In addition, the study of the optical properties of the two phases of PbTiO3, by applying Hubbard’ U potential, corrects the systematic inaccuracy of the GGA approximation, as well as validating the electronic analysis and offering excellent concordance with the experimental results. Therefore, our results underline that the GGA/PBE approximation with the Hubbard U potential correction could be an effective method for obtaining reliable band gap predictions with moderate computational cost. Therefore, these findings will enable theorists to make use of the precise values of these two phases’ gap energies to enhance PbTiO3’s performance for new applications.

Funder

ISSP UL

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3