A Standardized Procedure to Build a Spectral Library for Hazardous Chemicals Mixed in River Flow Using Hyperspectral Image

Author:

Gwon YeonghwaORCID,Kim DongsuORCID,You Hojun,Nam Su-Han,Kim Young DoORCID

Abstract

The occurrence of natural disasters as a consequence of accidental hazardous chemical spills remains a concern. The inadequate, or delayed, initial response may fail to mitigate their impact; hence, imminent monitoring of responses in the initial stage is critical. Classical contact-type measurement methods, however, sometimes miss solvent chemicals and invoke risks for operators during field operation. Remote sensing methods are an alternative method as non-contact, spatially distributable, efficient and continuously operatable features. Herein, we tackle challenges posed by the increasingly available UAV-based hyperspect ral images in riverine environments to identify the presence of hazardous chemical solvents in rivers, which are less investigated in the absence of direct measurement strategies. We propose a referable standard procedure for a unique spectral library based on pre-scanning hyperspectral sensors with respect to representative hazardous chemicals registered on the national hazardous chemical list. We utilized the hyperspectral images to identify 18 types of hazardous chemicals injected into the river in an outdoor environment, where a dedicated hyperspectral ground imaging system mounted with a hyperspectral camera was designed and applied. Finally, we tested the efficiency of the library to recognize unknown chemicals, which showed >70% success rate.

Funder

Korea Ministry of Environment

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference25 articles.

1. Case analysis of the harmful chemical substances’ spill;You;Fire Sci. Eng.,2014

2. Review on detection analysis and environmental impacts for nitric acid spill response;Lee;Korean J. Hazard. Mater.,2013

3. The use of hyperspectral data for evaluation of water quality parameters in the river Sava;Kisevic;Fresenius Environ. Bull.,2016

4. Spectral Analysis of Water Reflectance for Hyperspectral Remote Sensing of Water Quality in Estuarine Water;Fan;J. Geosci. Environ. Prot.,2014

5. Remote sensing of the cyanobacteria life cycle: A mesocosm temporal assessment of a Microcystis sp. bloom using coincident unmanned aircraft system (UAS) hyperspectral imagery and ground sampling efforts;Pokrzywinski;Harmful Algae,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3