Beyond REM: A New Approach to the Use of Image Classifiers for the Management of 6G Networks

Author:

Baena Eduardo1ORCID,Fortes Sergio1ORCID,Muro Francisco1,Baena Carlos1ORCID,Barco Raquel1ORCID

Affiliation:

1. Instituto de Telecomunicación (TELMA), CEI Andalucía TECH, E.T.S. Ingeniería de Telecomunicación, Universidad de Málaga, 29010 Málaga, Spain

Abstract

The management of cellular networks, particularly within the environment rapidly advancing to 6G, presents considerable challenges due to the highly dynamic radio environment. Traditional tools such as Radio Environment Maps (REMs) have proven inadequate for real-time network changes, underlining the need for more sophisticated solutions. In response to these challenges, this work introduces a novel approach that harnesses the unprecedented power of state-of-the-art image classifiers for network management. This method involves the generation of Network Synthetic Images (NSIs), which are enriched heat maps that precisely reflect varying cellular network operating states. Created from user location traces linked with Key Performance Indicators (KPIs), NSIs are strategically designed to meet the intricate demands of 6G networks. This research delves deep into a comprehensive analysis of the diverse factors that could potentially impact the successful application of this methodology in the realm of 6G. The results from this investigation, coupled with a comparative assessment against traditional REM usage, emphasize the superior performance of this innovative method. Additionally, a case study involving an automatic network diagnosis scenario validates the effectiveness of this approach. The findings reveal that a generic Convolutional Neural Network (CNN), one of the most powerful tools in the arsenal of modern image classifiers, delivers enhanced performance, even with a reduced demand for positioning accuracy. This contributes significantly to the real-time, robust management of cellular networks as we transition into the era of 6G.

Funder

European Union

Ministerio de Ciencia e Innovación

Ministerio de Asuntos Económicos y Transformación Digital

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3