Productivity and Fuel Consumption in Skidding Roundwood on Flat Terrains by a Zetor Farm Tractor in Group Shelterwood Cutting of Mixed Oak Forests

Author:

Borz Stelian AlexandruORCID,Mititelu Victor-Bogdan

Abstract

Productivity assessment studies are essential in forest operations, mainly because their results enable operational planning and rate setting, the development of equitable payment systems, the assessment of environmental performance, the assessment of improvements brought by technology development, and the optimization of larger forest-based systems. This study examines productive performance and fuel consumption in farm-tractor based skidding operations implemented in flat terrain oak harvesting by developing detailed statistics and predictive models on skidding performance. Two felling areas were selected to monitor the operations, and detailed statistics and predictive models were developed at two resolutions by an end-to-end assessment. Based on 56 observed work cycles, and for average values of the number of logs, payload volume, winching distance and extraction distance of 4.96, 1.81 m3, 14.43 m, 177.3 m, respectively, the net efficiency and productivity rates of skidding operations were estimated at 0.125 h/m3 and 8.03 m3/h, respectively. At the resolution of piece-by-piece winching, winching time depended only on the winching distance. At the resolution of overall skidding operations, the skidding time depended on the number of logs in a payload and average winching and extraction distances. The same predictors were relevant in explaining the fuel consumption in skidding operations, which accounted for 3.72 L/h or 0.46 L/m3, while there was a variation in fuel consumption induced by the type of operation. Both efficiency and productivity were found to be highly sensitive to the operational distances, as the main factors affecting them. Nevertheless, significant improvements in efficiency, productivity, and fuel consumption may be achieved when dealing with fewer logs per turn and higher volumes per piece, since the models indicated no effects brought in fuel and time consumption by the log size, and the technical limits of the used winched reached 8.5 tons.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3