Follicular Atresia in Buffalo: Cocaine- and Amphetamine-Regulated Transcript (CART) and the Underlying Mechanisms

Author:

Yang Chunyan12,Zheng Haiying12,Amin Ahmed123,Faheem Marwa S.3ORCID,Duan Anqin12,Li Lingyu1,Xiao Peng12,Li Mengqi12,Shang Jianghua12

Affiliation:

1. Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China

2. Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China

3. Animal Production Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt

Abstract

Atresia is a process in ovarian follicles that is regulated by hormone-induced apoptosis. During atresia, granulosa cell (GC) apoptosis is a key mechanism orchestrated through diverse signaling pathways. Cocaine- and amphetamine-regulated transcript (CART) signaling within ovarian GCs has been demonstrated to play a key role in the regulation of follicular atresia in cattle, pigs, and sheep. The present work aimed to investigate the potential local regulatory role of CART in GC apoptosis-induced follicular atresia in buffalo, focusing on the modulation of the AKT/GSK3β/β-catenin signaling pathways, which are the intracellular signaling pathways involved in cell viability. Our findings revealed increased expression of CARTPT and BAX and decreased levels of AKT, β-catenin, and CYP19A1 genes in atretic follicles compared to healthy follicles. Subsequently, CART treatment in the presence of FSH inhibited the FSH-induced increase in GC viability by reducing estradiol production and increasing apoptosis. This change was accompanied by an increase in the gene expression levels of both CARTPT and BAX. At the protein level, treatment with CART in the presence of FSH negatively affected the activity of AKT, β-catenin, and LEF1, while the activity of GSK3β was enhanced. In conclusion, our study shows how CART negatively influences buffalo GC viability, underlying the modulation of the AKT/GSK3β/β-catenin pathway and promoting apoptosis—a key factor in follicular atresia.

Funder

Guangxi Natural Science Foundation

Guangxi Science and Technology Major Project

CARSGIT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3