Application of an Interval Two-Stage Robust (ITSR) Optimization Model for Optimization of Water Resource Distribution in the Yinma River Basin, Jilin Province, China

Author:

He Wei,Yang Luze,Li Minghao,Meng Chong,Li YuORCID

Abstract

The present study is based on the application of an interval two-stage stochastic programming (ITSP) model in the Yinma River Basin. A robust method based on interval two-stage robust (ITSR) optimization is introduced to construct an optimization model of water resource distribution in order to solve the problems of water shortage in low-income and high-income areas caused by the unreasonable distribution of water resources. The model would help in reducing the system risk in the Yinma River Basin caused by an excessive pursuit of economic benefits. The model simulations show that the amount of water required for the water resource distribution is significantly reduced after balancing the risks and the water resource distribution of the water use departments is reduced by up to 20%. In addition, the situation of water scarcity of various water use departments shows a decreasing trend. There is no scarcity of water use in Panshi, Yongji, Shuangyang and Jiutai areas. The water shortage of water use departments in other areas is reduced by up to 97%. The allocation of reused water to ecological and environmental departments with higher water demand further solved the water shortage problem in low-income departments in the interval-two-stage planning model. In this study, after the introduction of the robust optimization method in the Yinma River Basin, the stability of the water resources distribution system is significantly improved. In addition, the risk of water use system in the interval-two-stage stochastic model can be avoided.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3