Cost-Effective Edge Server Placement in Wireless Metropolitan Area Networks

Author:

Zeng Feng,Ren Yongzheng,Deng XiaohengORCID,Li Wenjia

Abstract

Remote clouds are gradually unable to achieve ultra-low latency to meet the requirements of mobile users because of the intolerable long distance between remote clouds and mobile users and the network congestion caused by the tremendous number of users. Mobile edge computing, a new paradigm, has been proposed to mitigate aforementioned effects. Existing studies mostly assume the edge servers have been deployed properly and they just pay attention to how to minimize the delay between edge servers and mobile users. In this paper, considering the practical environment, we investigate how to deploy edge servers effectively and economically in wireless metropolitan area networks. Thus, we address the problem of minimizing the number of edge servers while ensuring some QoS requirements. Aiming at more consistence with a generalized condition, we extend the definition of the dominating set, and transform the addressed problem into the minimum dominating set problem in graph theory. In addition, two conditions are considered for the capacities of edge servers: one is that the capacities of edge servers can be configured on demand, and the other is that all the edge servers have the same capacities. For the on-demand condition, a greedy based algorithm is proposed to find the solution, and the key idea is to iteratively choose nodes that can connect as many other nodes as possible under the delay, degree and cluster size constraints. Furthermore, a simulated annealing based approach is given for global optimization. For the second condition, a greedy based algorithm is also proposed to satisfy the capacity constraint of edge servers and minimize the number of edge servers simultaneously. The simulation results show that the proposed algorithms are feasible.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3