Synthesis of Copper Nanoparticles from Cu2+-Spiked Wastewater via Adsorptive Separation and Subsequent Chemical Reduction

Author:

Hong Hye-JinORCID,Ryu JunghoORCID

Abstract

Copper in ionic form (Cu2+) should be removed from wastewater because of its harmful effects on human health. Meanwhile, Cu-metal nanoparticles (Cu0 NPs) are widely used in various applications such as catalysts, optical materials, sensors, and antibacterial agents. Here, we demonstrated the recovery of Cu2+ from wastewater and its subsequent transformation into Cu0 NPs, a value-added product, via continuous adsorption followed by chemical reduction by hydrazine. To separate and enrich Cu2+ from wastewater, a biosorbent that exhibits excellent selectivity and adsorption capacity toward Cu2+, i.e., polyethyleneimine-grafted cellulose nanofibril aerogel (PEI@CNF), was packed into a column and used to treat 20 mg/L Cu2+ wastewater at a flow rate of 5 mL/min. The Cu2+ adsorption reached equilibrium at 72 h, and the Cu2+-saturated column was eluted using 0.1 M of HCl. After five consecutive elutions of Cu2+ from the adsorbent column, a Cu2+-enriched solution with a concentration of 3212 mg/L was obtained. The recovered Cu2+ concentrate was chemically reduced to obtain Cu0 NPs by reaction with hydrazine as a reductant in the presence of sodium dodecyl sulfate (SDS) as a stabilizer. The solution pH and hydrazine/Cu2+ ratio strongly affected the reduction efficiency of Cu2+ ions. When 0.1 M of SDS was used, spherical 50–100 nm Cu0 NPs were obtained. The results demonstrate that Cu2+-spiked wastewater can be converted into Cu0 NPs as a value-added product via adsorption followed by chemical reduction.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3