Deep Learning Based Impact Parameter Determination for the CBM Experiment

Author:

Kuttan Manjunath OmanaORCID,Steinheimer Jan,Zhou Kai,Redelbach Andreas,Stoecker Horst

Abstract

In this talk we presented a novel technique, based on Deep Learning, to determine the impact parameter of nuclear collisions at the CBM experiment. PointNet based Deep Learning models are trained on UrQMD followed by CBMRoot simulations of Au+Au collisions at 10 AGeV to reconstruct the impact parameter of collisions from raw experimental data such as hits of the particles in the detector planes, tracks reconstructed from the hits or their combinations. The PointNet models can perform fast, accurate, event-by-event impact parameter determination in heavy ion collision experiments. They are shown to outperform a simple model which maps the track multiplicity to the impact parameter. While conventional methods for centrality classification merely provide an expected impact parameter distribution for a given centrality class, the PointNet models predict the impact parameter from 2–14 fm on an event-by-event basis with a mean error of −0.33 to 0.22 fm.

Funder

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3