Author:
Zhu Dongjie,Du Haiwen,Sun Yundong,Cao Ning
Abstract
Vehicle driving path planning is an important information service in intelligent transportation systems. As an important basis for path planning optimization, the travel time prediction method has attracted much attention. However, traffic flow has features of high nonlinearity, time-varying, and uncertainty, which makes it hard for prediction method with single feature to meet the accuracy demand of intelligent transportation system in big data environment. In this paper, the historical vehicle Global Positioning System (GPS) information data is used to establish the traffic prediction model. Firstly, the Clustering in QUEst (CLIQUE)-based clustering algorithm V-CLIQUE is proposed to analyze the historical vehicle GPS data. Secondly, an artificial neural network (ANN)-based prediction model is proposed. Finally, the ANN-based weighted shortest path algorithm, A-Dijkstra, is proposed. We used mean absolute percentage error (MAPE) to evaluate the predictive model and compare it with the predicted results of Average and support regression vector (SRV). Experiments show that the improved ANN path planning model we proposed can accurately predict real-time traffic status at the given location. It has less relative error and saves time for users’ travel while saving social resources.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献