Driver’s Facial Expression Recognition in Real-Time for Safe Driving

Author:

Jeong Mira,Ko Byoung ChulORCID

Abstract

In recent years, researchers of deep neural networks (DNNs)-based facial expression recognition (FER) have reported results showing that these approaches overcome the limitations of conventional machine learning-based FER approaches. However, as DNN-based FER approaches require an excessive amount of memory and incur high processing costs, their application in various fields is very limited and depends on the hardware specifications. In this paper, we propose a fast FER algorithm for monitoring a driver’s emotions that is capable of operating in low specification devices installed in vehicles. For this purpose, a hierarchical weighted random forest (WRF) classifier that is trained based on the similarity of sample data, in order to improve its accuracy, is employed. In the first step, facial landmarks are detected from input images and geometric features are extracted, considering the spatial position between landmarks. These feature vectors are then implemented in the proposed hierarchical WRF classifier to classify facial expressions. Our method was evaluated experimentally using three databases, extended Cohn-Kanade database (CK+), MMI and the Keimyung University Facial Expression of Drivers (KMU-FED) database, and its performance was compared with that of state-of-the-art methods. The results show that our proposed method yields a performance similar to that of deep learning FER methods as 92.6% for CK+ and 76.7% for MMI, with a significantly reduced processing cost approximately 3731 times less than that of the DNN method. These results confirm that the proposed method is optimized for real-time embedded applications having limited computing resources.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Action Unit Analysis for Monitoring Drivers’ Emotional States;IEEE Sensors Journal;2024-08-01

2. Self-supervised extracted contrast network for facial expression recognition;Multimedia Tools and Applications;2024-06-18

3. Guided Interpretable Facial Expression Recognition via Spatial Action Unit Cues;2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG);2024-05-27

4. A Review of Advancements in Driver Emotion Detection: Deep Learning Approaches and Dataset Analysis;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16

5. Find the Bot!: Gamifying Facial Emotion Recognition for Both Human Training and Machine Learning Data Collection;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3