Within-Season Crop Identification by the Fusion of Spectral Time-Series Data and Historical Crop Planting Data
Author:
Affiliation:
1. School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
2. Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China
Abstract
Funder
National Natural Science Foundation of China
Sichuan Science and Technology Program
Publisher
MDPI AG
Subject
General Earth and Planetary Sciences
Link
https://www.mdpi.com/2072-4292/15/20/5043/pdf
Reference38 articles.
1. Benedetti, R., Bee, M., Espa, G., and Piersimoni, F. (2010). Agricultural Survey Methods, John Wiley & Sons.
2. Mapping crops within the growing season across the United States;Konduri;Remote Sens. Environ.,2020
3. Monitoring US Agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program;Boryan;Geocarto Int.,2011
4. Mueller, R., and Harris, M. (2013, January 23–25). Reported uses of CropScape and the national cropland data layer program. Proceedings of the International Conference on Agricultural Statistics VI, Rio de Janeiro, Brazil.
5. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach;Cai;Remote Sens. Environ.,2018
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A spatiotemporal shape model fitting method for within-season crop phenology detection;ISPRS Journal of Photogrammetry and Remote Sensing;2024-11
2. Early-Season Crop Classification with Planet Fusion;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07
3. SYNERGIZING LANDSAT-8 AND MODIS DATA FOR ENHANCED PADDY PHENOLOGY ASSESSMENT AND CROP FREQUENCY MAPPING: A FUSION OF PHENOLOGICAL INSIGHTS AND MACHINE LEARNING ALGORITHMS;Geographia Technica;2024-02-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3