Monitoring of the Human Body Signal through the Internet of Things (IoT) Based LoRa Wireless Network System

Author:

Shahidul Islam Mohammad,Islam Mohammad TariqulORCID,Almutairi Ali F.ORCID,Beng Gan Kok,Misran NorbahiahORCID,Amin Nowshad

Abstract

Internet of Things (IoT) based healthcare system is now at the top peak because of its potentialities among all other IoT applications. Supporting sensors integrated with IoT healthcare can effectively analyze and gather the patients’ physical health data that has made the IoT based healthcare ubiquitously acceptable. A set of challenges including the continuous presence of the healthcare professionals and staff as well as the proper amenities in remote areas during emergency situations need to be addressed for developing a flexible IoT based healthcare system. Besides that, the human entered data are not as reliable as automated generated data. The development of the IoT based health monitoring system allows a personalized treatment in certain circumstances that helps to reduce the healthcare cost and wastage with a continuous improving outcome. We present an IoT based health monitoring system using the MySignals development shield with (Low power long range) LoRa wireless network system. Electrocardiogram (ECG) sensor, body temperature sensor, pulse rate, and oxygen saturation sensor have been used with MySignals and LoRa. Evaluating the performances and effectiveness of the sensors and wireless platform devices are also analyzed in this paper by applying physiological data analysis methodology and statistical analysis. MySignals enables the stated sensors to gather physical data. The aim is to transmit the gathered data from MySignals to a personal computer by implementing a wireless system with LoRa. The results show that MySignals is successfully interfaced with the ECG, temperature, oxygen saturation, and pulse rate sensors. The communication with the hyper-terminal program using LoRa has been implemented and an IoT based healthcare system is being developed in MySignals platform with the expected results getting from the sensors.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3