In-Situ Observation of Adhesion Behavior During Ultrasonic Al Ribbon Bonding

Author:

Takahashi Yasuo,Takashima Kazumasa,Misawa Kouta,Takaoka Yusuke

Abstract

In-situ observation was performed on a transparent silica substrate during ultrasonic Al ribbon bonding, using a high-speed video camera with differing frame rates, 104 fps and 103 fps, to clarify the adhesion behavior. The bonding process was observed as follows. Initially, friction slip occurred, producing multiple island streaks in the direction parallel to the ultrasonic vibration. The island streaks were formed as a scratch, due to surface waviness of the Al ribbon. Momentarily, a belt-shaped bond zone was formed at the center, normally due to the ultrasonic vibration. The island streaks could be clearly observed at 104 fps. However, the central belt zone was unclear and appeared translucent at 104 fps; although it was clear when observed at 103 fps. The island streaks were unclear at 103 fps. The positional relation of the island streaks and the central belt zone was confirmed from in-situ observation results of a twist and peel test of Al ribbon bonded to silica substrate. The central belt zone was between the island streaks and the silica substrate.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3