Genetic Analysis Implicates Dysregulation of SHANK2 in Renal Cell Carcinoma Progression

Author:

Chang Chi-Fen,Huang Shu-Pin,Hsueh Yu-MeiORCID,Geng Jiun-Hung,Huang Chao-Yuan,Bao Bo-YingORCID

Abstract

SH3 and multiple ankyrin repeat domains (SHANK) is a family of scaffold proteins that were first identified to be involved in balancing synaptic transmission via regulation of intracellular signalling crosstalk and have been linked to various cancers. However, the role of the SHANK genes in renal cell carcinoma (RCC) remains to be elucidated. In this study, we aimed to evaluate whether genetic variants in SHANK family genes affect the risk of RCC and survival of patients. A genetic association study was conducted using logistic regression and Cox regression analyses, followed by the correction for a false discovery rate (FDR), in 630 patients with RCC and controls. A pooled analysis was further performed to summarise the clinical relevance of SHANK gene expression in RCC. After adjustment for known risk factors and the FDR, the SHANK2 rs10792565 T allele was found to be associated with an increased risk of RCC (adjusted odds ratio = 1.79, 95% confidence interval = 1.32–2.44, p = 1.96 × 10−4, q = 0.030), whereas no significant association was found with RCC survival. A pooled analysis of 19 independent studies, comprising 1509 RCC and 414 adjacent normal tissues, showed that the expression of SHANK2 was significantly lower in RCC than in normal tissues (p < 0.001). Furthermore, low expression of SHANK2 was correlated with an advanced stage and poor prognosis for patients with clear cell and papillary RCC. This study suggests that SHANK2 rs10792565 is associated with an increased risk of RCC and that SHANK2 may play a role in RCC progression.

Funder

Ministry of Science and Technology of Taiwan

Kaohsiung Medical University Chung-Ho Memorial Hospital

Kaohsiung Medical University Research Center

China Medical University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3