Susceptibility Analysis of Geohazards in the Longmen Mountain Region after the Wenchuan Earthquake

Author:

Li Shuai,Ni ZhongyunORCID,Zhao YinbingORCID,Hu Wei,Long Zhenrui,Ma Haiyu,Zhou Guoli,Luo Yuhao,Geng Chuntao

Abstract

Multitemporal geohazard susceptibility analysis can not only provide reliable results but can also help identify the differences in the mechanisms of different elements under different temporal and spatial backgrounds, so as to better accurately prevent and control geohazards. Here, we studied the 12 counties (cities) that were severely affected by the Wenchuan earthquake of 12 May 2008. Our study was divided into four time periods: 2008, 2009–2012, 2013, and 2014–2017. Common geohazards in the study area, such as landslides, collapses and debris flows, were taken into account. We constructed a geohazard susceptibility index evaluation system that included topography, geology, land cover, meteorology, hydrology, and human activities. Then we used a random forest model to study the changes in geohazard susceptibility during the Wenchuan earthquake, the following ten years, and its driving mechanisms. We had four main findings. (1) The susceptibility of geohazards from 2008 to 2017 gradually increased and their spatial distribution was significantly correlated with the main faults and rivers. (2) The Yingxiu-Beichuan Fault, the western section of the Jiangyou-Dujiangyan Fault, and the Minjiang and Fujiang rivers were highly susceptible to geohazards, and changes in geohazard susceptibility mainly occurred along the Pingwu-Qingchuan Fault, the eastern section of the Jiangyou-Dujiangyan Fault, and the riparian areas of the Mianyuan River, Zagunao River, Tongkou River, Baicao River, and other secondary rivers. (3) The relative contribution of topographic factors to geohazards in the four different periods was stable, geological factors slowly decreased, and meteorological and hydrological factors increased. In addition, the impact of land cover in 2008 was more significant than during other periods, and the impact of human activities had an upward trend from 2008 to 2017. (4) Elevation and slope had significant topographical effects, coupled with the geological environmental effects of engineering rock groups and faults, and river-derived effects, which resulted in a spatial aggregation of geohazard susceptibility. We attributed the dynamic changes in the areas that were highly susceptible to geohazards around the faults and rivers to the changes in the intensity of earthquakes and precipitation in different periods.

Funder

The Key Research Project of National Park Research Center

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference136 articles.

1. Urbanization process and induced environmental geological hazards in China

2. China’s regional social vulnerability to geological disasters: evaluation and spatial characteristics analysis

3. LiDAR Technology and its Application and Prospect in Geological Environment;Ma;J. Geomech.,2016

4. Comparison of Machine Learning Methods for Potential Active Landslide Hazards Identification with Multi-Source Data

5. Remote Sensing Interpretation Method of Geological Hazards in Lush Mountainous Area;Wang;Geomat. Inf. Sci. Wuhan Univ.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3