Abstract
The evolution and development of radiotherapy in the last two decades has meant that postgraduate medical training has not kept up with this rapid progress both in terms of multidisciplinary clinical approaches and especially in terms of technological advances. Education in radiation oncology is a major priority in the context of the rapid development of radiotherapy, including advanced knowledge of radiobiology, radiation physics and clinical oncology, anatomy, tumor biology and advanced medical imaging. In this context, the lack of training in radiation oncology in the curricula of medical faculties may have detrimental consequences for the training of residents in radiotherapy but also in their choice of specialty after completing their university studies. There is a clear gap between resident physicians’ actual and required knowledge of radiotherapy, and this requires urgent remediation. In the context of technical advances in imaging-guided radiotherapy (IGRT) and new radiobiology data, a balanced approach divided equally between general oncology, clinical radiation oncology, radiation oncology technology, medical physics and radiobiology, anatomy and multimodal imaging, including mentorship could bring educational and career choice benefits for students of radiation oncology.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference43 articles.
1. Recent advances in radiation oncology
2. Ten years of progress in radiation oncology
3. Recent developments in radiation oncology-integrating radiation physics and molecular radiobiology advances into clinical radiotherapy practice and beyond;The;Ai Zheng,2008
4. Overview of image-guided radiation therapy
5. The use of the linear quadratic model in radiotherapy: a review
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献