Detection and Visualisation of Pneumoconiosis Using an Ensemble of Multi-Dimensional Deep Features Learned from Chest X-rays

Author:

Devnath Liton,Fan Zongwen,Luo Suhuai,Summons PeterORCID,Wang Dadong

Abstract

Pneumoconiosis is a group of occupational lung diseases induced by mineral dust inhalation and subsequent lung tissue reactions. It can eventually cause irreparable lung damage, as well as gradual and permanent physical impairments. It has affected millions of workers in hazardous industries throughout the world, and it is a leading cause of occupational death. It is difficult to diagnose early pneumoconiosis because of the low sensitivity of chest radiographs, the wide variation in interpretation between and among readers, and the scarcity of B-readers, which all add to the difficulty in diagnosing these occupational illnesses. In recent years, deep machine learning algorithms have been extremely successful at classifying and localising abnormality of medical images. In this study, we proposed an ensemble learning approach to improve pneumoconiosis detection in chest X-rays (CXRs) using nine machine learning classifiers and multi-dimensional deep features extracted using CheXNet-121 architecture. There were eight evaluation metrics utilised for each high-level feature set of the associated cross-validation datasets in order to compare the ensemble performance and state-of-the-art techniques from the literature that used the same cross-validation datasets. It is observed that integrated ensemble learning exhibits promising results (92.68% accuracy, 85.66% Matthews correlation coefficient (MCC), and 0.9302 area under the precision–recall (PR) curve), compared to individual CheXNet-121 and other state-of-the-art techniques. Finally, Grad-CAM was used to visualise the learned behaviour of individual dense blocks within CheXNet-121 and their ensembles into three-color channels of CXRs. We compared the Grad-CAM-indicated ROI to the ground-truth ROI using the intersection of the union (IOU) and average-precision (AP) values for each classifier and their ensemble. Through the visualisation of the Grad-CAM within the blue channel, the average IOU passed more than 90% of the pneumoconiosis detection in chest radiographs.

Funder

Huaqiao University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference83 articles.

1. Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques—2 Volumes,2009

2. Tuberculosis (TB) Classification in Chest Radiographs using Deep Convolutional Neural Networks;Devnath;Int. J. Adv. Sci. Eng. Technol.,2018

3. Use of clinical MRI maximum intensity projections for improved breast lesion classification with deep convolutional neural networks

4. Lung Nodule Classification via Deep Transfer Learning in CT Lung Images;Nóbrega;Proceedings of the 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS),2018

5. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3