Numerical Study on the Influence of Model Uncertainties on the Transport of Underwater Spilled Oil

Author:

Wang Daosheng,Luo Zhixuan,Mu Lin

Abstract

Oil pollution influences marine biology, ecology, and regional sustainable development capacity, but model uncertainties limit the ability of the numerical model to accurately predict the transport and fate of the underwater oil spill. Based on a three-dimensional underwater oil spill model validated by satellite images of the oil slick at the sea surface, the Penglai 19-3 oil spill accident in the Bohai Sea was simulated; in addition, several sensitivity experiments were set up to investigate the influence of model uncertainties in the background wind, current, start time of the oil spill, and spill site on the transport of underwater spilled oil in the Penglai 19-3 oil spill accident. The experimental results indicate that the uncertainty in the background wind has a certain impact on the simulated centroid position at the sea surface, and little effect on the simulated underwater results, while the uncertainty in the background current has a significant influence on the transport of the underwater spilled oil both at the sea surface and underwater. An uncertainty of 24 h in the start time of the oil spill can cause more than 1 time larger than the benchmark case displacement of the oil spill centroid point and sweeping area at the sea surface, as the periodic tidal current is the main constituent of the ocean current in the Bohai Sea. The uncertainty in the spill site has a large influence on the final position of the oil spill centroid point, but the oil spill trajectories do not intersect with each other within 48 h, which makes it possible to identify the oil spill platform from the actual observations. The influence of uncertainties in the important model inputs and key model parameters on the transport of underwater spilled oil in the Penglai 19-3 oil spill accident is evaluated for the first time, which is of substantial significance for improving the prediction accuracy of the transport and fate of underwater oil spills.

Funder

National Natural Science Foundation of China

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Fundamental Research Program

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3