Can Green Technological Innovation Reduce Hazardous Air Pollutants?—An Empirical Test Based on 283 Cities in China

Author:

Ma Ning,Liu Puyu,Xiao Yadong,Tang Hengyun,Zhang Jianqing

Abstract

Based on the panel data of 283 cities in China from 2009 to 2018, this paper analyzes the effect of urban green scientific and technological innovation enhancement on hazardous air pollutants using the GS2SLS method, which simultaneously controls for model endogeneity and spatial spillover effects and reveals the transmission mechanism of urban green scientific and technological innovation level. It was found that (1) There is a significant spatial spillover effect of hazardous air pollutants between regions, both in China as a whole and in the eastern, central, and western parts of the country, and the spatial spillover effect of hazardous air pollutants is significantly greater in the eastern and central parts of China than in the western parts. (2) Green technological innovation has a significant inhibitory effect on hazardous air pollutants in cities in eastern and central China. An extended study found that the improvement in green technology levels in innovative cities has a better effect on controlling hazardous air pollutants than in non-innovative cities. (3) The energy- saving and green economy effects have a mediating influence on the effect of green technological innovation on hazardous air pollutants in cities, and the simultaneous occurrence of these two effects in green technological innovation serves to enhance the transmission of hazardous air pollutants in order to facilitate the long-term management of haze.

Funder

National Social Science Foundation of China

National Natural Science Foundation of China

Ministry of Education Philosophy and Social Science Research Funded Project

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3