Effects of Calcium on Arsenate Adsorption and Arsenate/Iron Bioreduction of Ferrihydrite in Stimulated Groundwater

Author:

Chen Mengna,Xie Zuoming,Yang Yang,Gao Ban,Wang Jia

Abstract

The reduction and transformation of arsenic-bearing ferrihydrite by arsenate-iron reducing bacteria is one of the main sources of arsenic enrichment in groundwater. During this process the coexistence cations may have a considerable effect. However, the ionic radius of calcium is larger than that of iron and shows a low affinity for ferrihydrite, and the effect of coexisting calcium on the migration and release of arsenic in arsenic-bearing ferrihydrite remains unclear. This study mainly explored the influence of adsorbed Ca2+ on strain JH012-1-mediated migration and release of arsenate in a simulated groundwater environment, in which 3 mM ferrihydrite and pH 7.5. Ca2+ were pre-absorbed on As(V)-containing ferrihydrite with a As:Fe ratio of 0.2. Solid samples were analyzed by X-ray diffraction (XRD), scanning electron microscopic (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The results show that calcium and arsenate can synergistically adsorb on ferrihydrite due to the electrostatic interactions, and the adsorbed Ca2+ mainly exists on the surface through the outer-sphere complex. Adsorbed Ca2+ entering the stimulated groundwater was easily disturbed and led to an extra release of 3.5 mg/L arsenic in the early stage. Moreover, adsorbed Ca2+ inhibited biogenic ferrous ions from accumulating on ferrihydrite. As a result, only 12.30% Fe(II) existed in the solid phase, whereas 29.35% existed without Ca2+ adsorption. Thus, the generation of parasymplesite was inhibited, which is not conducive to the immobilization of arsenic in groundwater.

Funder

National Natural Science Foundation of China

Grant for Innovative Research Groups of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3