Development and Evaluation of Machine Learning-Based High-Cost Prediction Model Using Health Check-Up Data by the National Health Insurance Service of Korea

Author:

Choi YeongahORCID,An Jiho,Ryu Seiyoung,Kim Jaekyeong

Abstract

In this study, socioeconomic, medical treatment, and health check-up data from 2010 to 2017 of the National Health Insurance Service (NHIS) of Korea were analyzed. This year’s socioeconomic, treatment, and health check-up data are used to develop a predictive model for high medical expenses in the next year. The characteristic of this study is to derive important variables related to the high cost of domestic medical expenses users by using data on health check-up items conducted by the country. In this study, we tried to classify data and evaluate its performance using classification supervised learning algorithms for high-cost medical expense prediction. Supervised learning for predicting high-cost medical expenses was performed using the logistic regression model, random forest, and XGBoost, which have been known to result the best performance and explanatory power among the machine learning algorithms used in previous studies. Our experimental results show that the XGBoost model had the best performance with 77.1% accuracy. The contribution of this study is to identify the variables that affect the prediction of high-cost medical expenses by analyzing the medical bills using the health check-up variables and the Korea Classification Disease (KCD) large group as input variables. Through this study, it was confirmed that musculoskeletal disorders (M) and respiratory diseases (J), which are the most frequently treated diseases, as important KCD disease groups for high-cost prediction in Korea, affect the future high cost prediction. In addition, it was confirmed that malignant neoplasia diseases (C) with high medical cost per treatment are a group of diseases related to high future medical cost prediction. Unlike previous studies, it is the result of analyzing all disease data, so it is expected that the study will be more meaningful when compared with the results of other national health check-up data.

Funder

the Ministry of Education(MOE, Korea) and National Research Foundation of Kore

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference33 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Insurance Prediction of Medical Resource Using Cross Gradient Regression Model;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09

2. Comparative Analysis of Machine Learning Methods for Multi-Year CVD Prediction;2023 International Conference on Smart Applications, Communications and Networking (SmartNets);2023-07-25

3. Performance Evaluation of Financial Industry Related Expense Forecasting Using Various Regression Algorithms for Machine Learning;Highlights in Science, Engineering and Technology;2023-07-11

4. Machine Learning on Insurance Premium Prediction;Proceedings of the 2023 9th International Conference on Computer Technology Applications;2023-05-10

5. Efficient Deep Learning Models for Predicting Super-Utilizers in Smart Hospitals;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3