Traffic Risk Environment Impact Analysis and Complexity Assessment of Autonomous Vehicles Based on the Potential Field Method

Author:

Cheng YingORCID,Liu Zhen,Gao Li,Zhao YananORCID,Gao Tingting

Abstract

Although autonomous vehicles have introduced a promising potential for improving traffic safety and efficiency, ensuring the safety of autonomous vehicles in complex road traffic environments is still a huge challenge to be tackled. To quickly quantify the potential risk factors of autonomous vehicles in traffic environments, this paper focuses mainly on the influence of the depth and breadth of the environment elements on the autonomous driving system, uses the potential field theory to establish a model of the impact of the environmental elements on the autonomous driving system, and combines AHP to quantify equivalent virtual electric quantity of each environment element, so as to realize the quantitative evaluation of the traffic environment complexity. The proposed method comprehensively considers the physical attributes and state parameters of the environmental elements, which compensates for the fact that the shortage of the factors considered in the traffic environment complexity assessment is not comprehensive. Finally, a series of experiments was carried out to verify the reliability of our proposed method. The results show that the complexity of the static elements is determined only by the physical attributes and shape of the obstacle; the complexity of the dynamic elements is determined by the movement of the obstacle and the movement of the autonomous vehicle, and the comprehensive complexity mainly depends on the complexity of their dynamic elements. Compared with other methods, the complexity evaluation values are generally consistent, the absolute percentage error of the majority of samples was within ±5%, and the degree of deviation was −1.143%, which provides theoretical support for autonomous vehicles on safety and the risk assessment in future.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference30 articles.

1. Test Scenario Generation and Optimization Technology for Intelligent Driving Systems

2. Generating Avoidable Collision Scenarios for Testing Autonomous Driving Systems

3. Research progress on scene-based virtual test of autonomous driving vehicles;Bing;China J. Highw. Transp.,2019

4. Autonomous vehicles testing methods review

5. StreetWise: Scenario-Based Safety Validation of Connected and Automated Driving.TNO, Helmond http://resolver.tudelft.nl/uuid:2b155e03-5c51-4c9f-8908-3fa4c34b3897

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3