Review of Urban Flood Resilience: Insights from Scientometric and Systematic Analysis

Author:

Gao Meiyan,Wang Zongmin,Yang HaiboORCID

Abstract

In recent decades, climate change is exacerbating meteorological disasters around the world, causing more serious urban flood disaster losses. Many solutions in related research have been proposed to enhance urban adaptation to climate change, including urban flooding simulations, risk reduction and urban flood-resistance capacity. In this paper we provide a thorough review of urban flood-resilience using scientometric and systematic analysis. Using Cite Space and VOS viewer, we conducted a scientometric analysis to quantitively analyze related papers from the Web of Science Core Collection from 1999 to 2021 with urban flood resilience as the keyword. We systematically summarize the relationship of urban flood resilience, including co-citation analysis of keywords, authors, research institutions, countries, and research trends. The scientometric results show that four stages can be distinguished to indicate the evolution of different keywords in urban flood management from 1999, and urban flood resilience has become a research hotspot with a significant increase globally since 2015. The research methods and progress of urban flood resilience in these four related fields are systematically analyzed, including climate change, urban planning, urban system adaptation and urban flood-simulation models. Climate change has been of high interest in urban flood-resilience research. Urban planning and the adaptation of urban systems differ in terms of human involvement and local policies, while more dynamic factors need to be jointly described. Models are mostly evaluated with indicators, and comprehensive resilience studies based on traditional models are needed for multi-level and higher performance models. Consequently, more studies about urban flood resilience based on local policies and dynamics within global urban areas combined with fine simulation are needed in the future, improving the concept of resilience as applied to urban flood-risk-management and assessment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3